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MEASUREMENT ERROR IN REGRESSION ANALYSIS

Amitava Mitra and Khursheed Alam

University of Southern California and Clemson University

ABSTRACT

Consider the linear regression model Y = X6 + e where Y

denotes a vector of n observations on the dependent variable,

X is a known matrix, 9 is a vector of parameters to be estimated

and £ is a random vector of uncorrelated errors. If X'X is

nearly singular, that is if the smallest characteristic root of

X'X is small then a small perturbation inthe elements of X, such

as due to measurement errors, induces considerable variation in

the least squares estimate of 8. In this paper we examine for

the asymptotic case when n is large the effect of perturbation

with regard to the bias and mean squared error of the estimate.

Key words: Linear regression; least squares estimate;

mean squared error.

AMS Classification: 62J05
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1. Introduction. Consider the linear regression model

(1.1) Y - Xe + e

where Y is a nxl vector of observations, X is a fixed nxp matrix

of rank p, e is a pxl vector of unknown parameters to be estimated

and e is a nxl vector of random errors. Let the components of e

be uncorrelated and identically distributed with mean zero and

variance a 2 , say. Let p1 ... ,p denote the characteristic roots

of X'X, where prime denotes the transpose of a matrix. The least

squares estimate of 8 and the sum of mean squared errors (SMSE) of

the components of 8 are given by

(1.2) e (X'X)-XiY

(1.3) SMSE 8 = E(8-8)' (8-8)

=(2 P -1

Clearly, 8 is an unbiased estimator of 6. From (1.3) it is

seen that if X'X is nearly singular, that is if one or more of

the values of Xi is small then 8 is unstable in the sense that
1^

the variance of some of the components of 8 is large. A small

value of Ai may arise from certain interrelationship between the

independent variables of the linear model. The relation is

called multicollinearity in econometrics.

Suppose that the elements of X are subjected to small random Sedia

perturbations, such as due to measurement errors. From (1.2) it

is clear that the least square estimator a is no more unbiased
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for 8. Beaton, Rubin and Barone (1976) considered a set of

data proposed by Longley (1967) for regression analysis to

find the effect of perturbation. They introduced perturbation as

round-off errors in the numerical values of the elements of X.

From an extensive empirical study they found that the regression

analysis could be very sensitive to small perturbations. The

authors have concluded from their study that "the computer program

is often not the most important factor in computing regression

analysis, and that the best thing a program can do for some problems

is to refuse to complete the calculations". The conclusion seems

to be naive (see Dent and Cavendar (1977) and Espasa (1977) for

comments on the authors' paper). The problem arises from the choice

of the estimator, namely, the least squares estimator which is

unstable when the design matrix XIX is nearly singular. The

difficulty can be overcome by choosing some other estimator, such

as, the "ridge" estimator, given by 6 = (X'X+KI)-I'Y, where K

is a positive number. But then 6 is not unbiased.

In this paper we examine the behavior of the least squares

estimator when n is large and X is subjected to a random pertur-

bation. Formulas are given for the asymptotic bias and variance.

The relation between the bias and the eigen values of X'X is shown

through a canonical representation of the parameter 0. It is seen

that the smaller the eigen value, the larger is the associated bias.

The given formulas are checked with an empirical result obtained

by the Monte Carlo method.

In a recent paper, Stewart (1977) has given an upper bound on

the deviation of the least squares estimator due to a given per-

turbation in X. But Stewart's method is not applicable to the

derivation of the results given in this paper.
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2. Main results. Let F denote the perturbation matrix. That

is, X+F represents the perturbed matrix of the independent

variables of the linear model (1.1). Suppose that the elements

of F are uncorrelated random variables, distributed independent

of e with mean zero and common variance v, say. The least squares

estimator of e for the perturbed data set is given by

(2.1) * - ((X+F)' (X+F))- (X+F)'Y

Therefore

-l
(2.2) Ee* =E((X+F)'(X+F)) (X+F)'Xe

- e -E((X+F)'(X+F))- (x+F)'Fe

where the expectation in the second line on the right side of

(2.2) is with respect to the distribution of the perturbation

errors. Formula (2.2) gives the bias of e*.

Let the rows of the matrix X be extended such that the elements of X

are unifonly bounded and the characteristic roots of X'X are given by

- n vi + O(n 4), where vl,...,p are a fixed set of positive

numbers. Let a - P8 and c* - P6*, where P is an orthogonal matrix

diagonalizing XIX. Multiplying both sides of (2.2) by P and equat-

ing the ith component of the resulting vector of each side we have

after simplification

(2.3) E a - -- + O(n-))i"

Similarly, the variance and mean squared error of a* are given by

* n2(2.4) n var i - - (1. + 0(n' ))

1.+
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* 22
(2.5) n E(i-ai) = 2 (1 + 0( n)) !2(i + 0(n )).

Therefore

(2.6) n SMSE 8* = n E(e"-e)'(8"-e)

= n E (W* a) (a*-a)

p 02 p nv2a1
= [ +V + -+V)2 1(l + 0(n

1)).
i1l i1l (vi+v)

If v = 0, that is, if there is no perturbation then E a .

From (2.3) it is seen that the relative bias of ai is small if v is
11

small compared to vi, as it should be expected. On the other hand,

if Vi is small compared to v then the relative bias of ai is nearly

equal to -1.
* 02 02

From (2.4) it is seen that for v = 0 we have var a = -

which agrees with the result given in (1.3). To see the relation

between the effect of perturbation on the variance of ai and

the associated eigen value of X'X,we write (2.4) as follows:

(2.7) n v var a =- 2__ + 0(n-).Vi+V

From (2.7) it is seen that the perturbation of X has a stabilizing

influence on the least square estimate. But the reduction in the

variance should be reckoned with the induced bias.

To verify the asymptotic formulas given above, we have carried

out the regression analysis under perturbation with a 16x6 matrix X,

obtained from the data proposed by Longley (1967). However, the

matrix was modified for certain changes in scale and origin. The

characteristic roots of the modified matrix are given by Ai - 16v i,

where
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= 2188(10)-2 - 3705(10)1 V3 = .2005(10)-1

2 3 4V4 = .1118(10) . 5 = .1282(10) V V 6 - .3596(10)

From the given values of vi we generate as follows an nxp matrix

Z for large n such that the characteristic roots of Z'Z are approxi-

mately given by Xi = nvi + 0(n): Generate a p-component

vector U whose components are identically and independently dis-

tributed as N(0,1). Compute

T = P' VD U

where P is the orthogonal matrix diagonalizing XIX and D denotes

the diagonal matrix with diagonal elements equal to vi ,

i = 1,...,6. Generate n independent values of T and set them

equal to the columns of Z'.

For each Z we generate the error vector F whose components

are independently and identically distributed as N(0,1), that is,

a = 1. Then we compute Y from the formula Y = Ze + e, where the

components of 8 are given by

91 = .0151, 2 -.3582, e3 = -.2020

04 - -.1033, a5 = -.5110, e6 = .1829.

The value of 6 given above is the least square estimate of 6

computed from the data given by Longley. For the discussion of

this paper any other value of 6 could have been assumed as well.

The matrix Z is perturbed by adding to each element of Z

independent values of a random variable &, distributed uniformly

on (-A, 1), giving v -

The results of the regression analysis are shown in Table I

below. The figures given in the table for the asymptotic bias and

mean squared error of the least squares estimate are obtained from
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the formulas (2.3) and (2.5). The figures for the empirical

values given in the table are each based on 500 simulations.

They were found to be fairly accurate, by checking duplicate

values. It is seen from the table that there is fair agreement

between the theoretical and empirical figures.

*1
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Table I - Asymptotic (Asym) and Empirical (Emp) values of

* * 1
E a- Iiand nMSE(i) for v Y - and n - 500.

Ec~x - 01iMSE(ai)

Asym Emp Asym Emp

i=l -.3713 -.3914 80.6393 76.7583

2 .3028 .4482 54.1350 50.6663

3 .0027 .0596 .4825 1.9906

4 .0004 .0353 .0889 .7266

5 -.0001 -.0253 .0078 .3884

6 - -.0025 .0003 .0047

-Denotes insignificant figure
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